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The subject of research under this contract was topics in linear programming and
related problems. The problems we have investigated are quite diverse.

We investigated in [1] a theoretical framework for incorporating horizontal and vertical
decomposition techniques into interior-point methods for linear programs. Corresponding
to the linear program: Maximize ¢’ subject to Az = a, Bx = b, ands > 0, we
introduced two functions in the penalty parameter ¢ > 0 and the Lagrange relaxation
parameter vector w, f* (t,w), the maximum of cTz — w”(Az — a) +t X7, Inz; subject

to B& = b and & > 0 (for horizontal decomposition), and fd(t,'w), the minimum of
aTw + by — tY5-1Inz; subject to BTy — 2 = ¢ — ATw and z > 0 (for vertical
decomposition). For each ¢ > 0, f~p(t,-) and fd(t,-) are strictly convex C'* functions
with a common minimizer w(¢), which converges to an optimal Lagrange multiplier
vector w* associated with the constraint Az = a as ¢ — 0, and enjoy the strong
self-concordance property given by Nesterov and Nemirovsky. Based on these facts,
we developed conceptual algorithms with the use of Newton’s method for tracing the
trajectory {w(t) : t > 0}, and analyzed their computational complexity.

Vavasis and Ye proposed a layered-step primal-dual interior-point algorithm, whose num-
ber of operations has an upper bound that depends only on the coefficient matrix A and
not on b and ¢. They defined the concept of crossover events for a linear programming
problem that provides important insight into the behavior of the path of centers. The
number of operations of the layered-step interior-point algorithm depends on the num-
ber of crossover events. Although the number depends on b and ¢, they prove that it is
bounded by (1/2)n(n—1). The question of whether there could be more than n crossover
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events was left open in their paper. If one could prove that the number is bounded by
O(n), the complexity of the layered-step interior-point algorithm could be reduced by a
factor of n. In [4] we presented a linear programming instance with more than (1/ 8)n?
crossover events. We believe that the instance helps much for understanding the behavior

of the path of centers.

The main drawback of the Vavasis-Ye algorithm is the use of an unknown big constant
g. In [6] we proposed a simplified layered-step interior-point algorithm which did not use
any unknown big constant. The complexity of the simplified algorithm is the same as
that of Vavasis and Ye.

Like the algorithm of Tardos, the Vavasis-Ye algorithm solves flow problems in strongly
polynomial time. It is called a “layered-step” interior-point algorithm, since it occasion-
ally uses a layered least squares direction to compute a new iterate. It is at least as fast as
the O(y/nL)-iteration primal-dual path-following algorithms. Furthermore, if the path
of centers has an almost straight part, the layered step may accelerate the algorithm.
In particular, it attains an exact optimal solution when the iterate is close enough to a
solution. So a layered-step interior-point algorithm is not only efficient in theory, but

may also become a very good algorithm in practice.

The number of arithmetic operations performed by the algorithm is bounded in terms
of a big constant ¥4 which is defined as the maximum of |AT(ADAT)~*AD||, where D
is a diagonal matrix whose diagonal entries are positive. This number is used for (i)
computing the search direction, and (ii) constructing a problem which is equivalent to
the original problem with a trivial initial primal-dual interior feasible solution when no
feasible initial point is available. A drawback of the VY algorithm is that a good estimate
of 4 should be known in advance, which may be difficult to compute. It may, however,
be estimated by 2% if A is an integral matrix of input size L.

We proposed a modification of the layered-step interior-point algorithm. Our algo-
rithm does not use any unknown number for computing the search direction. Instead,
we need an estimate of the norm of an optimal solution, but it is only necessary for
constructing an equivalent problem to initiate the algorithm. If we know ¥4, we obtain
a bound on the norm of an optimal solution as shown in by Vavasis and Ye and hence

our algorithm is implementable.

3.

We made progress on the problem of solving two-person games represented as game
trees. In [2] we presented new algorithms both for zero-sum games and general games.
Our algorithms are, in general, exponentially better than the standard approach to the
problem. They thus provide the first practical method for solving games that are not toy

problems nor have a special structure.




We found a method that avoids the exponential blowup of the normal-form transfor-
mation. The basic idea is that the outcome of the game depends only on the distribution
of probability weights that a randomized strategy induces on the leaves of the tree. We
represent a strategy compactly in terms of these realization weights. These are defined
directly in terms of the game tree, so their total size is linear rather than exponential
in its size. This compact representation has a number of advantages. Using realization
weights and LP duality, equilibrium strategies can then be found by solving a correspond-
ing LP or LCP. We obtain the following two major results: 1. The optimal strategies of
a two-player zero-sum perfect-recall game in extensive form are the solutions of a lin-
ear program whose size, in sparse representation, is linear in the size of the game tree.
2. The Nash equilibria of a general two-player perfect-recall game in extensive form are
the solutions of a linear complementarity problem whose size, in sparse representation,

is linear in the size of the game tree.

4.

Stochastic programming is a relatively young area of mathematical programming. Prac-
titioners are now using stochastic models much more often than before because of the
rapidly growing computational capabilities (including powerful hardware, modern soft-
ware for linear programming, and high level modeling tools). The theoretical foundation,
however, has not been established in a satisfactory way. Furthermore, the potential of
using interior point algorithms has not been fully pursued. Our studies of decomposition
for interior point algorithms are aimed at this.

Problems with stochastic parameters can be studied with various approaches and it
is not yet clear what is the right one. There has been a growing interest among com-
puter scientists in so-called online algorithms. These algorithms deal with multistage
decision problems where data is revealed incrementally, while decisions have to be made.
In stochastic programming one assumes some probability distribution over future pa-
rameters and has to make decisions in the present. Problems of this kind can often be
posed as Markov decision processes or infinite horizon dynamic programming, and can
sometimes be solved by linear programming (yet in a way different from what stochastic
programming does). Recent work in stochastic programming suggests solving “simpli-
fied” sampled problems based on a set of possible scenarios. Another field, that is now
called stochastic optimization, studies the question of searching for the optimum of a
system whose performance is estimated by a stochastic simulation and the parameters
can be chosen by a decision maker. In addition, there is the field of stochastic control
that is supposed to deal with very similar questions. Moreover, people in Al now develop
more methods for such problems using machine learning. We believe all of this raises
very interesting foundational questions about the relationships among the various fields,
and we need to test them on various basic problems. We began a study of the multi-




period warehouse problem to see how sampled scenarios can help finding good inventory
policies. This study is both theoretical and experimental, using a simulation model.

Infanger and Megiddo have laid the foundation for the dual value iteration method,
a practical approach to optimizing linear systems. Qur research in this area was moti-
vated by the practical problem of multi-product production scheduling. Despite the vast
literature on this problem, it seems that currently there is no good method for solving
it in practice. Deterministic models (mainly multi-period linear programming) do not
address the stochastic nature of the problem. Stochastic programming turns out to be
too complicated. Dynamic programming and Markov decision processes have limited
practical value due to the so-called curse of dimensionality. This is due to the need to
discretize the problem and the number of discrete states of a system is typically quite

large.

We consider a system whose state may change at discrete times 1,2,... The state
is described by a state vector s = (s1,...,5m)T € R™. Here we focus on a system
whose state space is a bounded convex polyhedron given by a set of linear inequalities
Ms > a for some M € R™*™ and a € R". Depending on the action we take when the
system is at state s, the system undergoes a transition into a new state s’. Below we
consider stochastic systems, but let us, for simplicity, begin with deterministic ones. We
first consider state transitions defined as follows. The actions are described by vectors
z € R". They are subject to constraints dictated by a mechanism specified by matrices

C € R™*" and B, B' € %™ and a vector d € R™:
Cax+ Bs=DB's'"+d,

where B’ is nonsingular (so s’ is determined by s and «). Also, there are additional
linear inequalities Az > b (A € RP*"*, b € RP) that « must satisfy. When we take action
x we incur a cost of cTx (¢ € R™). The actions are taken at times 1,2, ..., which we call

stages, and the cost is subject to a discount factor of A < 1 per stage. Suppose the initial

state is s, so M s® > a. Suppose, by induction, we have chosen actions x!,...,z*!

k-1

and states s',... s*"! respectively, so that

Cx’ + Bs’ ' = B's’" +d
Ms’>a
Az’ > b
for j=1,...,k — 1, and now choose an action x* and a state s* so that
CzF + Bs*'= B's* +d
Ms* > a
Az* > b .




Thus, we have defined by induction a policy (a feasible solution) for the “infinite-horizon”
problem whose total discounted cost is Y52 A¥z*+!. We wish to minimize this quantity.
Note that the problem can be presented as an infinite linear programming problem.

Unlike the classical value iteration method that computes successive approximations
for L(s) from above, our method proceeds by computing successive approximations from
below. An iteration of the algorithm begins with a piecewise linear function Li(s), given
as the maximum of a finite number of linear functions:

l(s)=(a)'s+4& (i=1,...,k)

SO

Li(s) = lrggc{&(s)} < L(s) foralls.

During the iteration, the algorithm picks some state s and computes actions at s that
are optimal relative to the current approximation. This is accomplished by solving the
following optimization problem:

Mir%imli)ze cTx 4+ AL (s")

subject to (z,s') € F(s) .

The latter can be solved as a linear programming problem by introducing an auxiliary

variable ¢:
Minimize cfa + Mt

x,s't
subject to Ax — B's'=—-Bs+b
Ms'> a
Dz >d

t—(a)Ts'>48 (i=1,...,k).
Denote the optimal value of this problem by LPy(s). The dual problem is

k
Maximize — (Bs)Ty+bTy+a%z+d w+ ) Su

y’zlwlul ""luk .
=1

subject to ATy +DTw =c¢

k
~ (B 'y +M%z2 > ua =0
i=1

k

Zui:)\

=1

zyw,u; >0 (e=1,...,k)

Obviously, LPx(s) is a convex piecewise linear function of s, and LPx(s) < L(s) for
all s. In practice we cannot compute LPy(s) for all s. Suppose we compute LP(3)
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for a certain state s by solving the dual problem. Thus, we obtain optimal dual values
y = y(8), z = 2(8), w = w(8), and w; = w;(8) (1 =1,...,k). Let us denote

ak—}—l — ak+1(§) — —BT’y

and .
5k+1 = 5k+1(<§) = bTy -+ aTz + dTw + Z&ui .
=1
Since the feasible domain of the dual problem does not depend on s, it follows that the
optimal dual solution computed for § is feasible for any s. It follows that for all s,

ler1(8) = leya(5;8) = (@*1(3)) s + 8k(8) < LPi(s) < L(s) .

Thus, the linear functional #.1(s) can be used to update the piecewise linear approxi-

mation of L(s):
Lii1(8) = max{Li(s), lks1(8)} -

Note that fk.*.l(.é;é) = LPk(g)

As long as there exist states § and s such that
ley1(8;8) > Li(s)

a better approximation Ly i(s) of L(s) can be obtained. Otherwise, further iterations
will produce the same function Li(s). The following theorem establishes that if this
happens then an optimal solution has been found:

If LPy(s) < Li(s) foralls

then Li(s)= L(s) forall s.

It is interesting to note that in order to establish the optimality of an action at s° one
does not need to consider all possible states.

While studying the open area of online algorithms for linear programming as one type
of stochastic programming problem, we made progress on a variant of the secretary
problem, developing a method that gives an expected constant rank of the hired secretary
independent of the number of candidates.

In the classical secretary problem, n items or options are presented one by one in
random order (i.e., all n! possible orders being equally likely). If we could observe
them all, we could rank them totally with no ties, from best (rank 1) to worst (rank




n). However, when the 1th object appears, we can observe only its rank relative to the
previous i—1 objects; the relative rank is equal to one plus the number of the predecessors
of 1 which are preferred to . We must accept or reject each object, irrevocably, on the
basis of its rank relative to the objects already seen, and we are required to select k
objects. The problem has two main variants. In the first, the goal is to maximize the
probability of obtaining the best k objects. In the second, the goal is to minimize the
expectation of the sum of the ranks of the selected objects or, more generally, for a given
positive integer z, minimize the expectation of the sum of the zth powers of the ranks.

Solutions to the classical problem apply also in variety of more general situations.
Examples include (i) the case where objects are drawn from some probability distribution;
the interesting feature of this variant is that the decisions of the algorithms may be
based not only on the relative rank of the item but also on an absolute “grade” that the
item receives, (i) the number of objects is not known in advance, (iii) objects arrive at
random times, (iv) some limited backtracking is allowed: objects that were rejected may
be recalled, (v) the acceptance algorithm has limited memory, and also combinations of
these situations. In addition to providing intuition and upper and lower bounds for the
above important generalizations of the problem, solutions to the classical problem also
provide in many cases very good approximations, or even exact solutions. Our methods
can also be directly extended to apply for these generalizations.

The obvious application to choosing a best applicant for a job gives the problem its
common name, although the problem (and our results) has a number of other applications
in computer science. For any problem with a very large data set, it may be impractical
to backtrack and select previous choices. For example, in the context of data mining,
selecting records with best fit to requirements, or retrieving images from digital libraries.
In such applications limited backtracking may be possible, and in fact this is one of the
generalizations mentioned above. Another important application is when one needs to
choose an appropriate sample from a population for the purpose of some study. In other
applications the items may be jobs for scheduling, opportunities for investment, objects
for fellowships, etc.

The problem has been extensively studied in the probability and statistics literature.

Consider the simple case where only one object has to be selected. Since the observer
cannot go back and choose a previously presented object which, in retrospect, turns out
to be the best, it clearly has to balance the risk of stopping too soon and accepting an
apparently desirable object when an even better one might still arrive, against the risk
of waiting for too long and then find that the best item had been rejected earlier.

It is easy to see that the optimal probability of selecting the best item does not tend
to zero as n tends to infinity; consider the following stopping rule: reject the first half
of the objects and then select the first relatively best one (if any). This rule chooses the
best object whenever the latter is among the second half of the objects while the second




best object is among the first half. Hence, for every n, this rule succeeds with probability
greater than 1/4. Indeed, it has been established that there exists an optimal rule that
has the following form: reject the first 7 — 1 objects and then select the first relatively
best one or, if none has been chosen through the end, accept the last object. When n
tends to infinity, the optimal value of r tends to n/e, and the probability of selecting the

best is approximately 1/e.

It is not as easy to see that the optimal expected rank of the selected object tends to
a finite limit as n tends to infinity. Observe that the above algorithm (for maximizing
the probability of selecting the best object) yields an expected rank of n/(2e) for the
selected item; the argument is as follows. With probability 1/e, the best item is among
the first n/e items, and in this case the algorithm selects the last item. The conditional
expectation of the rank of the last object in this case is approximately n/2. Thus, the
expected rank for the selected object in this algorithm tends to infinity with n. Indeed,
in this paper we show that, surprisingly, the two goals are in fact in conflict.

It can be proven by backward induction that there exists an optimal policy for mini-
mizing the expected rank of selected item that has the following form: accept an object
if and only if its rank relative to the previously seen objects exceeds a certain threshold
(depending on the number of objects seen so far). Note that while the optimal algorithm
for maximizing the probability of selecting the best has to remember only the best object
seen so far, the threshold algorithm has to remember all the previous objects.

There has been much interest in the case where more than one object has to be
selected. It is not hard to see that for every fixed k, the maximum probability of selecting
the best k objects does not tend to zero as n tends to infinity. For the case where k is
general, it was shown that there is an optimal policy with the following threshold form:
accept an object with a given relative rank if and only the number of observations exceeds
a critical number that depends on the number of items selected so far; in addition, an
object which is worse than any of the already rejected objects need not be considered.
Notice that this means that not all previously seen items have to be remembered, but
only those that were already selected and the best among all those that were already

rejected.

In analogy to the case of k = 1, bounding the optimal expected sum of ranks of
k selected items appears to be considerably harder than minimizing the probability of
selecting the best k items. Also, here it is not obvious to see whether or not this sum
tends to a finite limit when n tends to infinity. Backward induction gives recurrences that
seem even harder to solve than those derived for the case of maximizing the probability
of selecting the best k.

Thus, the question of whether the expected sum of ranks of selected items tends to
infinity with n has been open. There has not been any explicit solution for obtaining a
bounded expected sum. Thus the second, possibly more realistic, variant of the secretary




problem has remained open.

In [3] we presented a family of explicit algorithms for the secretary problem such that
for each positive integer z, the family includes an algorithm for accepting items, where
for all values of n and k, the resulting expected sum of the zth powers of the ranks of
the accepted items is at most k*+!/(z + 1) + C(z) - k**%% log k, where C(z) is a constant.
Clearly, the sum of ranks of the zth powers of the best k objects is k**!/(z + 1) + O(k*).
Thus, the sum achieved by our algorithms is not only bounded by a value independent
of n, but also differs from the best possible sum only by a relatively small amount. For
every fixed k, this expected sum is bounded by a constant. Thus we resolve the above
open questions regarding the expected sum of ranks and, in general, zth powers of ranks,
of the selected objects.

Qur approach is very different from the dynamic programming approach taken in
most of the papers mentioned above. In addition to being more successful in obtaining
explicit solution to this classical problem, it can more easily be used to obtain explicit
solutions for numerous generalizations, because it does not require a completely new
derivation for each objective function.

We remark that our approach does not partition the items into k groups and select one
item in each. Such a naive method is suboptimal. Since the expected sums achieved by
our algorithms depend only on k and z and, in addition, the probability of our algorithms
to select an object does not decrease with its rank, it will follow that the probabilities of
our algorithms to actually select the best k objects depend only on k and z, and hence
for fixed k and z, do not tend to zero when n tends to infinity.

In contrast, for any algorithm for the problem, if the order of arrival of items is the
worst possible (i.e., generated by an oblivious adversary), then the algorithm yields an
expected sum of at least kn*27(*¥1) for the zth powers of the ranks of selected items.
Our lower bound holds also for randomized algorithms.

M. Ajtai obtained a very interesting complexity result as follows. The main result is
a proof of the theorem that the problem of finding in a lattice a vector of minimum
Ly-norm is NP-hard in randomized reductions. (A problem P is NP-hard for random
reductions if every problem in NP can be reduced to a polynomial number of instances
of the problem P by a polynomial time probabilistic algorithm.) It was known that
the shortest vector problem in L; and Le is NP-hard (for deterministic reductions),
and the NP-hardness of the most natural case the case of L, was conjectured (by Van
Emde Boas) already almost twenty years ago. Although NP-hardness for randomized
reduction is a somewhat weaker concept then for deterministic reductions, still it provides
convincing evidence that the problem is computationally infeasible. It implies that if the
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problem has a probabilistic polynomial time solution then every problem in NP-has such
a solution. (There are relatively few interesting problems whose NP-hardness was proved
for randomized reductions but not for deterministic ones. Adleman has shown that
factoring integers can be reduced this way to the shortest vector problem by assuming
certain unproven number-theoretical hypotheses. This work has started as an attempt to
get the same result without any unproven assumptions. Finding a short vector in a lattice
is one of the most basic questions in optimization problems and has many applications
including integer programming, cryptography, factoring algorithms for polynomials, etc.

The shortest vector problem is the following: given a lattice L in the n-dimensional
Euclidean space find a shortest non-zero vector in it. We prove that even an approximate
version of this problem is NP-hard for randomized reduction, namely we show that there
is an absolute constant ¢ > 0 so that the problem “find a vector v € L, v # 0 so that if
v is a shortest non-zero vector then |[v]| < (1 + 27" )|lvo||” is N P-hard for randomized
reduction. Our theorem also implies that the problem find a vector in L whose length is
less then w, where w is a integer is NP-complete for randomized reductions. We prove
the result by showing first that in a certain lattice defined by from the logarithms of small
primes (an extension of the lattice that Adleman used in his proof) each short vector has
only 0,1 coeficients in a suitably chosen basis. This creates a connection between the
shortest vector problem and the subset sum problem. Through several steps we make
this connection closer and closer and finally we reduce the subset sum problem, which is
known to be NP-complete, to the shortest vector problem. A paper titled “The shortest
vector problem in L,” is now in preparation.

Ajtai worked with C. Dwork on a public key crypto-system with average-case worst-
case equivalence. The goal of this work is to show that certain very natural lattice-
problems that occur frequently in integral optimization and are important for crypto-
graphic applications, are as difficult in the worst-case as in the average case. The result
makes it possible to create individual instances of problems that are just as difficult as
the worst-case problem, which makes the cryptographic protocols based on them more
secure. It also shows that certain basic optimization problems are computationally in-
feasible even in the average case (provided that their worst-case version is infeasible).
In most cases the average case problems are more realistic, they are closer to the prob-
lems occurring in applications then the worst-case problems, however the widely accepted
conjectures/assumptions always concern the difficulty of worst-case problems. Our re-
sult therefore widens the scope of these assumptions to a class of problems with greater
significance.

The unique shortest vector problem is the following: Assume that an n-dimensional
lattice L is given so that it has a unique shortest non-zero vector v in the sense that
any other vector u which is at most n° times longer than u is parallel to v, where ¢
is a fixed constant. Find v if L is represented by an arbitrary basis. This problem
as a worst-case problem is considered computationally difficult (for an arbitrary but
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fixed ¢) although it is not known whether it is NP-complete. We show that if this
problem has no polynomial probabilistic time solution (for some ¢ > 5) then this s also
true for the following average-case problem. Assume that an infinite set of equidistant
hyperplanes is given in the n-dimensional space. (That is all of the hyperplanes defined
by equations u -z = a where u # 0 is a fixed vector and a takes every possible integer
value). Let H be the union of the hyperplanes inside a large (compared to the distance
d of the neighboring hyperplanes) cube Q. We take a polynomial number of random
points on H then perturb them slightly (to a distance less than n=°d). We get the
points pi, ..., Pm that are not on the hyperplanes any more just close to them. We show
that if the worst-case unique shortest vector problem has no polynomial time solution
then it is not possible to reconstruct the hyperplanes (even in an approximate sense)
knowing only the points p1,...,Pm- Actually we prove more, we show that the sequence
P1,- ., Pm is computationally indistinguishable from a sequence of random points chosen
with uniform distribution from Q. This leads to the construction of a random number
generator and other cryptographic applications. It also shows that the following the
optimization problem minimize z - p; — z; subject to the constraints, z € R, 3|lz|| < 1,
..., T, are integers is computationally infeasible even if py,...,pn are generated at
random with the described distribution. This problem is very natural, it is connected to
the task of reconstructing a set of linear functions from their approximate values. It also
has an inherent symmetry which helps making the connection between the worst-case and
average-case problems. (One infinite set of equidistant hyperplanes can be transformed
by a rotation and a multiplication by a constant to any other.)

7.

During 1996 M.A. Saunders and J.A. Tomlin carried out research on numerical stability
and behavior of interior point methods for regularized linear and quadratic programs.

The first phase of this research was the investigation of stable methods for reducing
the Newton systems characteristic of modern interior methods to Karush-Kuhn-Tucker
(KKT) systems. Several alternative methods were proposed and numerically tested.
These results are described in [9]

The second phase of this research investigated the efficiency and stability of reduced
KKT methods for regularized LP’s when some essential parameters are varied. The
concern is to have the regularization parameters large enough to ensure stability, but
not so large as to excessively perturb the original problem. The extent of reduction of
the KKT system also can have a significant effect on both stability and efficiency. These
results are described in [10].
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8.

In [7] we used a novel application of linear programming to image processing, where we
successfully separated background embedded in objects approximating the background
by low order polynomial using a metric that combined L; and Loo.
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